Progressively Diffused Networks for Semantic Image Segmentation
نویسندگان
چکیده
This paper introduces Progressively Diffused Networks (PDNs) for unifying multi-scale context modeling with deep feature learning, by taking semantic image segmentation as an exemplar application. Prior neural networks such as ResNet [11] tend to enhance representational power by increasing the depth of architectures and driving the training objective across layers. However, we argue that spatial dependencies in different layers, which generally represent the rich contexts among data elements, are also critical to building deep and discriminative representations. To this end, our PDNs enables to progressively broadcast information over the learned feature maps by inserting a stack of information diffusion layers, each of which exploits multi-dimensional convolutional LSTMs (Long-Short-Term Memory Structures). In each LSTM unit, a special type of atrous filters are designed to capture the short range and long range dependencies from various neighbors to a certain site of the feature map and pass the accumulated information to the next layer. From the extensive experiments on semantic image segmentation benchmarks (e.g., ImageNet Parsing, PASCAL VOC2012 and PASCAL-Part), our framework demonstrates the effectiveness to substantially improve the performances over the popular existing neural network models, and achieves state-of-the-art on ImageNet Parsing for large scale semantic segmentation.
منابع مشابه
Augmented Feedback in Semantic Segmentation Under Image Level Supervision
Training neural networks for semantic segmentation is data hungry. Meanwhile annotating a large number of pixel-level segmentation masks needs enormous human effort. In this paper, we propose a framework with only image-level supervision. It unifies semantic segmentation and object localization with important proposal aggregation and selection modules. They greatly reduce the notorious error ac...
متن کاملDiagnosis of brain tumor using PNN neural networks
Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملDeep Neural Networks for Semantic Segmentation of Multispectral Remote Sensing Imagery
A semantic segmentation algorithm must assign a label to every pixel in an image. Recently, semantic segmentation of RGB imagery has advanced significantly due to deep learning. Because creating datasets for semantic segmentation is laborious, these datasets tend to be significantly smaller than object recognition datasets. This makes it difficult to directly train a deep neural network for sem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1702.05839 شماره
صفحات -
تاریخ انتشار 2017